WELCOME TO OUR VIRTUAL OPEN HOUSE

Southwestern Electric Power Company representitives invite you to attend this open house to learn
more. We welcome your feedback via telephone and email as we strive to make the most informed
decisions possible.

HOW THE SYSTEM WORKS

HIGH VOLTAGE

1) Generation stations

SWEPCO produces electricity at coal, natural gas, nuclear, wind and hydro-electric power stations and then transports it long distances over transmission lines.

2) EHV TRANSMISSION

Extra High Voltage (EHV)
electric transmission lines are
generally 345 kilovolt (kV) on
SWEPCO's system.

3) SUBSTATIONS

Substations direct the flow of
electricity and either decrease or
increase voltage levels for transport.

HOW THE SYSTEM WORKS

LOCAL TRANSMISSION

SWEPCO typically uses $69 \mathrm{kV}, 138$ kV and 161 kV transmission lines to move power shorter distances -for example, to different parts of a city or county.

Substations transform 69 kV and 138 kV electricity into lower distribution level voltages such as $34.5 \mathrm{kV}, 12 \mathrm{kV}$, or 7.2 kV .

These main lines (also called circuits) connect substations to large parts of the community.

HOW THE SYSTEM WORKS

DISTRIBUTION

7) LATERAL DISTRIBUTION

These smaller capacity lines deliver electricity to neighborhoods and other smaller groups of customers.

8) INDIVIDUAL SERVICE

Smaller transformers step down voltage to levels customers can use $120 / 240$ volts is typical for an individual residence

TO USE AN ANALOGY, ELECTRIC
TRANSMISSION IS SIMILAR TO OUR NATIONAL ROAD SYSTEM. THREE KINDS OF POWER LINES EXIST BETWEEN POWER PLANTS AND HOMES AND BUSINESSES:

- Extra High Voltage lines (EHV) are like
electrical interstate highways.
- High voltage local transmission lines are like four-lane roads.
Distribution lines are like two-lane roads that eventually connect to your driveway.

PROJECT NEED \& BENEFITS

WHY IS THE PROJECT IMPORTANT TO OUR COMMUNITY?

MODERNIZES INFRASTRUCTURE

The line was installed in 1942 using wooden poles that have exceeded their planned lifespan. The project replaces these deteriorating structures with modern steel poles

IMPROVES RELIABILITY

Modernizing the transmission line:

- Strengthens the grid against severe weather impacts
- Decreases the likelihood of larger, community-wide power outages

Reduces the frequency of maintenance along the line route
HELPS MEET FUTURE NEEDS
Rebuilding the line helps ensure the grid meets the demand of SWEPCO's neighbors in the Harrison County region.

PROJECT SCHEDULE

TYPICAL STRUCTURES

SWEPCO crews plan to install single-pole steel structures.

Typical Structure Height: XXX feet
Typical Right-of-Way Width: 100 feet
Typical Distance Between Structures: XXX feet
*Exact structure design, right-of-way widths and distances between structures may vary based on geography and other factors

STRUCTURE COMPARISON

Typical structure heights are based upon voltage and configuration. Structures are not to scale but are shown in proportion to each other. Actual heights will vary depending on terrain

RIGHT-OF-WAY

SWEPCO HAS TWO KEY PHILOSOPHIES THAT PERTAIN TO POWER LINE RIGHTS-OF-WAY:

1
Routes should cause the least possible disturbance to people and the environment.

2
Property owners should be fairly compensated for any land rights that must be acquired.

SWEPCO studies the project area to determine the areas most affected and reach out to the landowners in the following ways:

TO SECURE NECESSARY RIGHT-OF-WAY AND COMMUNICATE:

- Width of the right-of-way
- Terms and conditions of easement
- Landowner compensation

TO OUTLINE SWEPCO'S CONSTRUCTION PROCESS WITH A SPECIFIC FOCUS ON:

- Property restoration
- Damage mitigation as appropriate

FIELD ACTIVITIES

GROUND PENETRATING RADAR
Ground Penetrating Radar (GPR) helps identify the location of underground utilities. A device that looks similar to a lawnmower, and is nondestructive to the soil, uses radio frequencies to detect objects below the ground's surface. Maps and images are created from the data.

HYDRO EXCAVATION
Crews use hydro excavation (hydrovac) in areas where many underground utilities are located near each other. This process involves using pressurized water to break down soil to expose under ground utilities. Afterward, crews backfill the area. The process helps prevent damage to underground infrastructure while gathering important information.

HELICOPTER
Challenging terrain or other restrictions/obstructions can make accessing certain parts of a project area difficult. In these locations, crews use helicopters to install structures, string conductors, per form line work and maintain electric facilities. Company representatives work with local media out lets to communicate these activities to the public

LIDAR
LiDAR (Light Detection and Ranging) uses laser pulses to measure the distance of an object to the source. The data points result in digital 3D maps for accurate design and engineering. LiDAR surveying crews use mobile (car or aerial vehicle) or static (tripod) equipment.

FIELD ACTIVITIES

SOIL BORINGS
Field crews use a drill to bring up soil samples and then backfill the holes. Testing the core samples helps determine soil conditions in the area. Soil conditions and types can affect structure location and foundation design

ENVIRONMENTAL SURVEY

Surveyors collect information about the habitats and physical attributes of the project area. They also look for ecological concerns like wetlands, flood plains and forests. This process can help protect endangered species, such as the Indiana Bat and American Burying Beetle.

CULTURAL RESOURCE SURVEY
Field crews walk the area and conduct multiple excavation tests to identify historical and archaeo logical artifacts. Landowners also provide information about their property to survey crews.

UNMANNED AERIAL VEHICLES (DRONES)
Unmanned aerial vehicles (UAVs), or drones, perform aerial inspections and safely gather data and detailed images of electric facilities. Company employees and vendors comply with all commercial Federal Aviation Administration (FAA) guidelines. Company representatives work with local media outlets to communicate these activities to the public.

FIELD ACTIVITIES

STAKING

Field crews use staking to mark the project area, identify utility equipment and pinpoint future structure locations. This process essentially transfers engineering and construction plans to the field.
Right-of-way crews use staking to identify parcel boundaries, easement boundaries and other utility locations within the company's rights-of-way.
Environmental crews use staking to identify wetlands or other environmentally sensitive areas

FIELD SURVEY
Field survey crews help determine an appropriate route for a new transmission line by identifying constraints within the project area.
Engineers conduct extensive studies of the terrain and soil to determine what types of structures and foundations are most suitable. They also gather information to create digital 3D maps of the project area to help engineer and design the project.

VEGETATION MANAGEMENT

WHAT IS VEGETATION MANAGEMENT?

The practice of controlling the growth of trees and other woody stemmed vegetation in line corridors and around substations, while maintaining respect for the environment.

WHY IS IT DONE?

To minimize power outages caused by trees and
other plants coming into contact with power lines.

THE GOALS OF SWEPCO'S VEGETATION MANAGEMENT PROGRAM ARE TO:

- Protect our system and minimize outages
- Minimize any adverse environmental impacts
- Ensure compliance with all applicable laws and regulations

Perform our work as safely as possible

- Maintain a positive relationship with land owners and the public

THANK YOU!

Thank you for visiting the project virtual open house. For more information and project updates please visit the project website, or contact us with any additional questions.

REPLAY OPEN HOUSE

DOWNLOAD SLIDE DECK

CONTACT US

VISIT PROJECT WEBSITE

